書籍詳細ページ
出版

エネルギーに基づく液状化予測手法に関するシンポジウム論文集

表示件数

10 30 50 100
タイトル 液状化現象の発生メカニズムの解明-液状化現象を継続させているエネルギーはどこから来るのか?
著者 塩井 幸武・橋詰 豊
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 267〜280 発行 2019/03/26 文書ID cs201903000001
内容 表示
ログイン
タイトル エネルギーの釣合に基づく地盤の液状化評価方法-応力法との比較から見た特異性-
著者 酒句 教明・下村 修一・安達 俊夫
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 281〜291 発行 2019/03/26 文書ID cs201903000002
内容 表示
ログイン
タイトル 累積損失エネルギーを用いた液状化強度曲線の算定方法
著者 本多 剛・清田 隆・呉 杰祐・重野 喜政
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 292〜300 発行 2019/03/26 文書ID cs201903000003
内容 表示
ログイン
タイトル 正規化消散エネルギーを活用し一回の試験から液状化強度特性を評価する手法の提案
著者 古関 潤一・Chuang ZHAO・Weichen LIU・青柳 悠大・松井 悠亮
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 301〜304 発行 2019/03/26 文書ID cs201903000004
内容 表示
ログイン
タイトル 遠心力模型実験を用いたエネルギーに基づく液状化予測手法の適用性検証
著者 石丸 真・佐藤 浩章
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 305〜311 発行 2019/03/26 文書ID cs201903000005
内容 表示
ログイン
タイトル エネルギーによる液状化判定法の事例-FL 法,有効応力解析との比較-
著者 東野 圭悟・國生 剛治
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 312〜323 発行 2019/03/26 文書ID cs201903000006
内容 表示
ログイン
タイトル 東日本大震災による液状化被害箇所の液状化強度特性の深度分布と種々な液状化判定
著者 石川 敬祐・安田 進・和田 昌大
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 324〜332 発行 2019/03/26 文書ID cs201903000007
内容 表示
ログイン
タイトル 地盤の塑性変形に費やされた入力地震動のエネルギーを等価線形解析から算定する手法の適用限界について
著者 加村 晃良・山口 輝大・金 鍾官・風間 基樹
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 333〜344 発行 2019/03/26 文書ID cs201903000008
内容 表示
ログイン
タイトル 異方応力状態の密度の異なる豊浦砂の液状化強度特性と累積損失・ひずみエネルギー
著者 石川 敬祐・原田 健二・安田 進・金井 勇介
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 345〜350 発行 2019/03/26 文書ID cs201903000009
内容 表示
ログイン
タイトル 液状化強度に及ぼす要因と対策の設計に関するエネルギー的な視点からの考察
著者 原田 健二・石川 敬祐・安田 進・金井 勇介・出野 智之
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 351〜358 発行 2019/03/26 文書ID cs201903000010
内容 表示
ログイン
タイトル 基準化累積損失エネルギーによる砂や各種しらす土の繰返し挙動評価
著者 清原 雄康
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 359〜365 発行 2019/03/26 文書ID cs201903000011
内容 表示
ログイン
タイトル 擬似エネルギー容量に基づく過剰間隙水圧モデルの検討
著者 道明 裕毅・山田 雅一
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 366〜378 発行 2019/03/26 文書ID cs201903000012
内容 表示
ログイン
タイトル 2016 年熊本地震の地震観測記録(KiK-net)を用いた波動エネルギー
著者 石澤 友浩・國生 剛治
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 379〜384 発行 2019/03/26 文書ID cs201903000013
内容 表示
ログイン
タイトル エネルギー法を用いた高架橋の液状化設計に関する一考察
著者 井澤 淳・山本 昌徳・神澤 拓・小島 謙一
出版 エネルギーに基づく液状化予測手法に関するシンポジウム論文集
ページ 385〜392 発行 2019/03/26 文書ID cs201903000014
内容 表示
ログイン
  • タイトル
  • 液状化現象の発生メカニズムの解明-液状化現象を継続させているエネルギーはどこから来るのか?
  • 著者
  • 塩井 幸武・橋詰 豊
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 267〜280
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000001
  • 内容
  • Vol. ??, No. ??, ???-???12122200gal10galgal320189287. 59101300410105101111267 Vol. ??, No. ??, ???-???196920183.2.4819942km/3. 119943. 21994122824. 112- 4. 1- 4. 6124. 11226850m4. 2 Vol. ??, No. ??, ???-???4.134.23444.434.3444.64.5332693 Vol. ??, No. ??, ???-???4.1-4.32400m80m50m15m1504. 320m4. 42-4.210-4(1210-2)4270 Vol. ??, No. ??, ???-???2-4.51-4.61-12m100gal2100gal- 4. 50180gal4.4-4.64.5125271180gal Vol. ??, No. ??, ???-???(sec—-4.61-4.72—120. 350. 830. 3510. 35310. 350. 80. 833320. 1- 4. 516272 Vol. ??, No. ??, ???-???-4.8-4.92—22020gal100gal0. 83- 4. 114. 9- 4. 17. 5m2- 4. 10- 4. 6200gal100gal727332. 4 Vol. ??, No. ??, ???-???max.99.813max.230.922max.196.840max.211.048max.177.390max.142.5180max.152.04.7517.029.543.5363max.147.3100-4.1067.5202142.02-4.122/2270.0380-4.12220[8274] Vol. ??, No. ??, ???-???210m-5.1-5.1-5.22.536gal2.5x10-2720m/s,5.2194867.3-5.15.1-5.15.234m-5.2-5.3-5.19275 Vol. ??, No. ??, ???-???-5.3270/720/65m270 gal-5.3,155gal613-5.3,- 5. 2, -3.21969620m7. 5- 5. 4,-5.5- 5. 40.86-5.45.4-5.510276- 5. 4450gal- 5. 5- 5. 2- 5. 5 Vol. ??, No. ??, ???-???-5.6-5.56m-5.6-5.6RC5.6198312011M9.0142000m50GL 20006.16.2GL6.36.46.53006.650112773500 Vol. ??, No. ??, ???-???6.96.25040200-10-30-40-600100Time (sec)6.36.16.7sgal6.8secgal s106.56.76.8122782003500300 Vol. ??, No. ??, ???-???6.16.66.710010-410023456.8()()()()()6.96.11327910-2 Vol. ??, No. ??, ???-???Conference on Earthquake Engineering, 2012.9()4)Shioi.Y, Hashizume.Y and Fkada.H: Seismic design based onresponse analyses from basement rock, 14TH World Conference onEarthquake Engineering, 2008.10()5)Shioi.Y, Hashizume.Y and Fkada.H :Liquefaction Mechanism ofSandy Ground and Influence of Surface Layer Hardness,, 8THNational Conference on Earthquake Engineering(USA), 2006.4()6)Shioi Y and Hashizume.Y:Mechanism of Liquefaction of SandyGround during Large Earthquakes, 10th International Conference onSoil Dynamics and Earthquake Engineering(usa),2001.107)Shioi.Y:,Experimental Study on Liquefaction of Sandy Soil, 7thWorld Conference on Earthquake Engineering, 1980.9871920162018https://ja.wikipedia.org/wiki/2018101)1951112013.52)12 19941995Shioi Y and Hashizume.Y: Clarified mechanism of liquefactionShioiYand1964Hashizume.Y,:MECHNISM,QUANTATIVECALCULATIONANDLIQUEFACTIONDURINGCOUNTER-MEASURESEARTHQUAKE,15th713phenomena during earthquake, 3rd Geotech Hanoi, 2016.113)192514OF2011WorldClarification of Generation Mechanism of Liquefaction in Earthquake- Where does the energy, to continue liquefaction, come from? -Yukitake SHIOI1), Yutaka HASHIZUME21Hachinohe Institute of Technology, Professor Emeritus2Hachinohe Institute of Technology, Department of Civil & Architectural EngineeringAbstractThe main cause of liquefaction in a large earthquake is depending on the shear strain waves transferred from softand pliable cohesive layer under the saturated sandy layer. The process of liquefaction can be clarified with multiplereflection theory and response analysis on the seismic waves through the thick sedimentary layers from the bedrockto the surface. The energy absorbed in the thick pliable layer yields its own long natural period and shakes the layerto induce liquefaction of the above sandy layer with large shear strain. The proposed method is able to apply anyplaces and can be used to investigate the levels, the limit, the countermeasures and others of liquefaction.Key words: liquefaction, dynamic response analysis, shear strain, equivalent linearization, wave energy1428010
  • ログイン
  • タイトル
  • エネルギーの釣合に基づく地盤の液状化評価方法-応力法との比較から見た特異性-
  • 著者
  • 酒句 教明・下村 修一・安達 俊夫
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 281〜291
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000002
  • 内容
  • 281 282 283 284 285 286 287 288 289 290 291
  • ログイン
  • タイトル
  • 累積損失エネルギーを用いた液状化強度曲線の算定方法
  • 著者
  • 本多 剛・清田 隆・呉 杰祐・重野 喜政
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 292〜300
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000003
  • 内容
  • Vol. ??, No. ??, ???-???1234123421.201112734RL1550% 70% 85%RL20250%5867)7)Dr = 70%1292 2.(5)670 %w=5%1100 kN/m2cCSR0.2020.293140.95a1P19)SPS10%b2Case 1 Dr = 70% CSR = 0.29331un61Caset(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%43CSRNo. 1No. 2No. 3No.419.800.61872.2201021795.10.2931119.820.61573.0201018166.20.2451419.780.62071.6201021492.40.2024719.790.61872.2201120584.80.21032Case 1CSR = 0.2932arar3(1)=4(2)c(3)1UUn(4)+u54n(5)Un(4)2293 Vol. ??, No. ??, ???-???7ncnn0.95Un5nn+1c0n=n+1n+16c37670.9548(1) nn/nc7Un/n+1(2)5(6)n6(3)nnn+1(4) (1)(3)1649Un/n+14c)(6)(6)/n7c797732944c) 11(b)11(c)2Dr = 50%Case8t(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%No. 1No. 2No. 319.410.67454.6199818366.30.20216519.380.68053.0199718265.50.2511619.390.67853.5199818265.50.27710No. 1No. 2No. 320.130.55886.12243286168.00.25215520.140.55686.72243311198.80.3273420.160.55387.52403311199.00.58317No. 1No. 2No. 319.350.68551.6191819272.80.215119.340.68751.1199318567.50.153619.410.67554.3188818567.80.12542No. 1No. 2No. 319.760.61670.4197021694.10.177919.780.61371.21972227104.00.149119.760.61570.7196521996.70.1621No. 1No. 2No. 320.140.55686.72035228106.80.269220.140.55686.71977226105.00.220320.160.55387.52123248126.50.225183Dr = 85%Case9t(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%3.Dr =50%4Dr = 85%5)10)t(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%2Dr = 50% 70% 85%2Dr = 50%Case6161253w = 10%10t10(a)(b)60.95t0.95(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%CSR = 0.20285%11(a)Dr = 85%Case16100(kN/m3)eDr (%)Vp (m/s)Vs (m/s)Gd (MN/m2)CSR / 'cNc, u=95%1450%10Dr = 70%Case11(b)4295 Vol. ??, No. ??, ???-???(a)(b)(c)10(a)Dr = 50%(b)(c)11(a)Dr = 85%(b)(c)12(a)Dr = 50%(b)(c)13(a)Dr = 70%(b)(c)14Dr = 85%5296 (a)Dr = 50%(d)(b)Dr = 50%(e)Dr = 70%(c)Dr = 70%(f)Dr = 85%Dr = 85%151214Dr = 50%Case 150%4Case 24 Dr = 70%Dr =70%Case1370%1CSR4.CSR85%20168)0.1%Dr = 47.6 ~ 56.6 %1650~85%7CSRNo.62974 Vol. ??, No. ??, ???-???0.957CaseDr (%)Gd (MPa)CSRNc,u=95%48.249.851.353.951.352.450.348.047.947.850.150.056.687.388.392.4104.8111.3110.2106.7110.6110.6114.2112.40.110.130.150.170.150.200.220.250.220.250.300.350.25261253132728751836851616180000-010000-020000-030000-041000-011000-021000-031000-042000-012000-022000-032000-043000-011000(a)0(b)2000171000182000160.250.51000172000180.5(a)(b)(a)1950%1000(b)16072983000 6.195.1)2)3)10~40(1)Yasuda, S., Harada, K., Ishikawa, K. and Kanemaru, Y.:Characteristics of liquefaction in Tokyo Bay area by the 2011 GreatEast Japan Earthquake, Soils and Foundations, Vol. 52, No. , pp.793-810, 2012.Yamaguchi, A., Mori, T., Kazama, M. and Yoshida, N.: Liquefactionin Tohoku district during the 2011 off the Pacific Coast of TohokuEarthquake, Soils and Foundations, Vol. 52, No. 5, pp. 811-819,2012.Towhata, I., Maruyama, S., Kasuda, K., Koseki, J., Wakamatsu, K.,Kiku, H., Kiyota, T., Yasuda, Y., Taguchi, Y., Aoyama, S. andHayashida, T.: Liquefaction in the Kanto region during the 2011 offthe pacific coast of Tohoku earthquake, Soils and Foundations, Vol.54, No. 4, pp. 859-873, 2014.4)5)1/2 1/4 1/86)(2)7)(3)Vo. 62 No. 5 pp. 45-46 2014.Tatsuoka, F., Ochi, K., Fujii, S. and Okamoto, M.: Cyclic undrainedtriaxial and torsional strength of sands for different samplepreparation methods, Soil and Foundations, Vol. 26, No.33, pp.23-41, 1986.Towhata, I. and Ishihara, K.: Shear work and pore pressure inundrained shear, Soils and Foundations, Vol. 25, No. 3, pp. 73-84,1985.Honda, T. and Shigeno, Y.: Evaluation of liquefaction strengthcurves using energy dissipation, Proc. of the 19th ICSMGE, Seoul,pp. 1023-1026, 2017.8)A1Vol.72 No. 4 pp. I_482-I_4882016.N9)10): Torsion WaveVsS2015No.10 2015.Mulilis, J. P., Seed, H. B., Chan, C. K., Mitchell, J. K. andArulanandan, K.: Effects of sample preparation on sand liquefaction,Journal of Geotechnical Engineering, ASCE, 103, GT2, pp. 91-108,1977.(????. ??. ??8299) Vol. ??, No. ??, ???-???Evaluation of liquefaction strength curve using cumulative dissipated energyTsuyoshi HONDA1 Takashi KIYOTA2Chiehyu WU31Takenaka Corporation, R&D Institute2The University of Tokyo, Institute of Industrial Science3Oriental Consultants Global, Soil Mechanics Division4Takenaka Corporation, R&D InstituteYoshimasa SHIGENO4AbstractUndrained cyclic load test using a triaxial apparatus has a problem in applying large cyclic stress ratio, because theextension failure is induced during the cyclic load, and the liquefaction resistance is smaller than that in hollowtorsional test. Using the concept that the cumulative dissipated energy is constant when liquefaction occurs, a newmethod to obtain a liquefaction strength curve using a single specimen was proposed without applying large cyclicstress ratio. From several series of liquefaction strength tests, it was founded that the specimens made by airpluviation method had brittle and smaller liquefaction resistance than those by wet tamping method, and that theliquefaction resistance was increased during cyclic load tests using small cyclic stress ratio. Applying small anddrained cyclic load to the air pluviation specimens prior to undrained cyclic load test, the increase of liquefactionresistance was not observed during cyclic load test, and they had higher liquefaction strength.Key words: liquefaction, cumulative dissipated energy, liquefaction strength curve, aging effect9300
  • ログイン
  • タイトル
  • 正規化消散エネルギーを活用し一回の試験から液状化強度特性を評価する手法の提案
  • 著者
  • 古関 潤一・Chuang ZHAO・Weichen LIU・青柳 悠大・松井 悠亮
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 301〜304
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000004
  • 内容
  • Vol. ??, No. ??, ???-???1Chuang ZHAO 2 Weichen LIU 11312 Post-doc Research Fellow, Dept . of Civil Engineering, Zhejiang Univ., China370.61.Edo-river C sandFS thawed at 98 kPa (Dr= 88.4 %)FS thawed at 30 kPa (Dr= 85.7 %)RS (Dr= 97.8 %)0.5FS thawed at 30 kPa0.410.2FS thawed at 98 kPas0.3RSs0.1'= 160 kPac0.0110100Number of cycles, Nc, to cause2v(DA)=3%1)10.6Edo-river C sand7FS thawed at 98 kPa (Dr= 88.4 %)FS thawed at 30 kPa (Dr= 85.7 %)RS (Dr= 97.8 %)0.5FS thawed at 30 kPa0.4FS thawed at 98 kPa0.32.0.2RS2.10.13'= 160 kPa13c10.030110Number of cycles, Nc, to cause218kPa160kPa1301100=3%v(DA) 18/(2*60 =0.15014142.23a c1a(=30(=0.150)10020)b10=30-10bs40kPa18/(2*/40 =0.2252505c253=30-250.6cEdo-river C sand30kPaFS thawed at 98 kPa (Dr= 88.4 %)FS thawed at 30 kPa (Dr= 85.7 %)RS (Dr= 97.8 %)0.518/(2*/30 =0.300FS thawed at 30 kPa0.4FS thawed at 98 kPa2.3a c0.34b,cRS0.210,250.1'= 160 kPac0.0110Number of cycles, Nc, to cause4=43b,c55R156572.42,3)2302100=3%v(DA) Vol. ??, No. ??, ???-???8200183.7D50=0.21mm, emax=1.243, emin=0.743,50-60%Gs=2.640B0.95100kPa75mm150mm1090.05Hz5Hz942629(1)~(3)R101)R32)(1) (2)7(1)3303R 11100.511(c)3)10RRR97119,10(1)(b)(a)(c)104.1)Kiyota T., Koseki, J., Sato, T. and Tsutsumi, Y.: Effects of sampledisturbance on small strain characteristics and liquefaction propertiesof Holocene and Pleistocene sandy soils, Soils and Foundations,Vol.49, No.4, pp.509-523, 2009.2)1522017.3)5.3.282019.(????. ??. ??4304)
  • ログイン
  • タイトル
  • 遠心力模型実験を用いたエネルギーに基づく液状化予測手法の適用性検証
  • 著者
  • 石丸 真・佐藤 浩章
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 305〜311
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000005
  • 内容
  • 305 'crhh306 307 308 vRLFL309LFL 310 311
  • ログイン
  • タイトル
  • エネルギーによる液状化判定法の事例-FL 法,有効応力解析との比較-
  • 著者
  • 東野 圭悟・國生 剛治
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 312〜323
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000006
  • 内容
  • Vol. ??, No. ??, ???-???FL1212FL()2011FL()(FLIP)1.(201332016)FL4)5)FL1)2011(M9.0)NFL4)5)()3(2011)(M9.0)5(1999)2.4)5)2)()(2011)(631)1FL)3)(3122mRL20(JGS 0541-2009)11RL20 2W(1W=Area(ODD )= Area(OBB ))1)NW(RL201Area(ABCDEA))(1)W1/2W(2)1(3)WArea(EDD )1/21(Area(CBB ))(2016)(4)FC(%)(kN/m2)vbW2W_2W(1Area(ABCDEA))W/c0W/W/E/EEc0SH1E1c0RL20(2)E/E=1-e-41ND3) 5)(c0RL20W/D5)W/2W_W2W_c05)6)5)(1(5)5)T1/41/2(5)4)EW_*=222W_5)(6)W_*5)1c05)W_*/2c0=2.06×W/RL20DAW/c05)3D3(7)c0W123135) Vol. ??, No. ??, ???-???u/(2Bei t) or (E/ ) /WW_* H/EufEu*/EuAERz=0Ek/Ee /UpwardEu/ =WEe /Ed/ =W2 B cos kz eiu1.0EuDownwardDisplacement:z=AEREk/Eu*tEu* Euz43.sin 2 2 z2(a)3.11/4(14-1(Eu*(b)5)14-1())5)357W _*/4c=(1+2K0)v/37)c0H370km*W_ H5Eu(8))14-1((2E)1NEuVs8(Rs( )2)As)(Fc IP D50 D10) RL20814-1(Vst))7)(8)Eu))7)(14-1((17)17cm((96)Hardin-DrnevichEuf(W_* H6EufW_* H/Euf)0.5=0.00147hmax=0.21)(hmax=0.21)0.5=0.0035(0.5=0.0006366)hmax=0.2)i=1,2,31 14-1(HGL-mBRcRsAc1-1AsAc1-2Ac20.001.503.104.004.335.305.907.308.309.3010.3011.3012.3013.3314.3115.3016.3016.4036.0051.0068.00)1mkN/m30.810.791.0916.5016.5016.5018.3018.3018.30cIPD 50mm%D 10mmR L2011501502.617.03.420.925.520.10.00.00.1350.1700.0090.0190.211(0.211)15.201.501.001.001.001.011.000.991.000.550.6018.5018.5018.5018.5018.5018.5018.5018.5018.5018.50Vsm/s15015510.016.019.012.012.05.12.92.03.510.716.218.211.010.54.32.31.52.610.112.98.412.012.00.00.00.00.00.00.2440.2380.2140.2000.2000.0740.0410.0730.0560.0560.1640.2630.3030.3230.323(0.323)(0.323)(0.323)(0.323)17017.0015517.0015519.603001(3314)(H-D) 12Rs(GL-4.5m)RL20=0.211As(GL-8.2m)RL20=0.164As(GL-9.6m)RL20=0.263As(GL-10.9m)RL20=0.303As(GL-11.7m)RL20=0.3231086456)(14-1())PS)00.001(JGS 1122G0f0.010.11W/ 'c07)G0l267W/c0DAG0l=(1.0 1.5)×G0fAs(GL-9.6m)1.2As(GL-10.9m)1G0l0.8Rs(GL-4.5m)RL20=0.211As(GL-8.2m)RL20=0.164As(GL-9.6m)RL20=0.263As(GL-10.9m)RL20=0.303As(GL-11.7m)RL20=0.3230.6800.40.26000.001400.010.11W/ 'c0Rs(GL-4.5m)As(GL-8.2m)As(GL-9.6m)As(GL-10.9m)As(GL-11.7m)20002040608W/c0K-NET80100G0f (kN/m2)u/c0(CHB008)(62011)(X)6)(2E)11)(W/u/DAu/DA)(2E)11)c07c0W/c02E85()2E5(2E)(2E)c059RL20Rs(GL-4.5m)As(GL-10.9mW/As(GL-8.2m)0.2RL20109(a)110kJ/m20.25 0.3GL-11.7m)c0u/DA70kJ/m2c05u/c01.0W/u/DAc02700kJ/mc01.0W/9(b)225c04315 Vol. ??, No. ??, ???-???(a)(2E)2E150100100805015010060040-505020-1002max =-125.7cm/s-1500100200(sec)00.01300110500500400250200(sec)0100200(sec)30010001002max =-628.5cm/s1003002000200-2500200(sec)30003000-7501002E 5750-5000(sec)(2E) 5(b)00.100.0130000.1110(sec)9(a)(2E) (b)(kN/m2)100200(%)0.01.02.03.00(2E) 5300(cm/s2)200400060000.00.00.00.010.010.010.010.020.020.020.020.030.030.030.030.040.040.040.040.050.050.030050.050.02E(cm/s)1002002E 510E+F=h T/As(11)3.2W/c0dFLIP8)No.869(DA9)=5%DA =12 10%2)h=0.01T=4 (H/Vs)d5316 W/(c012)As(GL-11.7m)d/2=0.5d=2 dW/W/c0(c012(e))c0W/W/= /(1+ )11)c0d/2c0c0As(GL-11.7m)W/13c0DAW/d/2c0c02 14-1(3(m)0.0-1.5-3.1-4.0-5.9-7.3-16.4-36.0-51.0BRcRcRsAc1-1AsAc1-2Ac2Es=S10.0050.0050.0050.0050.005p-4.5-8.2-9.6-10.9-11.7As98.0034.0334.0398.0057.3198.00169.50260.32282828282822G ma(kN/m ) K ma(kN/m )123,255321,42937,88398,79237,88398,79259,700155,68737,26397,17757,307149,44841,676108,68541,676108,685W11.71.5231.251.42c (kN/m )0.0111.4111.40.0109.60.0122.60.0h max0.240.200.200.240.200.240.200.20P10.50.50.30.30.8P20.60.550.550.50.420.50.50.40.40.40.30.30.30.20.20.2d/2 'c00.50.10.1n0.450.550.550.450.550.450.550.55mGmK0.50.50.50.50.50.50.50.5110100v p(m/s)16000.10.1100011010010000.11(a) Rs(GL-4.5m)(c) As(GL-9.6m)d/2 'c00.60.50.50.40.40.30.30.20.20.1DA=1%DA=2%0.11010010000.1110Nc100Nc(d) As(GL-10.9m)(e) As(GL-11.7m)116317100Nc(b) As(GL-8.2m)0.6110NcNc0.1v s(m/s)150150150150155170155155300C12.11.523.52.480.60.1d/2 'c0(°)41.40.00.039.10.039.00.030.00.60.6d/2 'c0(FLIP)0.0041GL(m)Rs2ma(kN/m )(kN/m )16.516.516.518.315.218.517.017.019.6)1000DA=5%DA=10%1000 Vol. ??, No. ??, ???-???0.60.60.6DA=5%DA=5%0.5DA=5%DA=5%0.50.40.40.40.30.30.30.20.20.20.10.010.10.10.011DA=5%DA=5%0.50.10.10.0110.11W/ 'c0W/ 'c0(a) Rs(GL-4.5m)W/ 'c0(b) As(GL-8.2m)0.6(c) As(GL-9.6m)0.6DA=5%DA=5%0.50.40.40.30.30.20.20.10.010.1DA=5%DA=5%0.50.10.0110.11W/ 'c0W/ 'c0(d) As(GL-10.9m)(e) As(GL-11.7m)12(DA =5%)13d/2 c0=0.231(As(GL-11.7m))3.3W/0.262 0.432(L)FLc011)max(DA =1d/210)Lv2 5 10%(E)c08Eufdd/2c0W/d=2 dc0d/2c0d/2c0= /(1+ )Wm0W/(14)FLEufW/7318m0AsLm0GL-8m 'max/ vL=0.00.20.40.6Euf(kJ/m2)0.80.01.010100W/ 'm010000.0B0.0001 0.0010.0B10.0Ac1 110.0AsAs15.015.0Ac1 2Ac1 220.02E20.02E 5(a) FL2EAc1 220.02E 5(b)(2E)14(LRL(kN/m2 )0.10.20.30.00.40.0(c)0.0B0.4RL20RL20W/ 'c00.10.20.30.00.0BRcRcRsAc1 15.00.4BRcRsAc1 15.0(FLIP)RL20W/ 'c00.20.30.12E 5)RL200.01Rs5.010.0As15.00.1RcRsAc1 15.0RsAc1 10.01BRcRc5.010000RsAc1 15.0As10.010.010.0As15.0As15.015.0Ac1 220.0Ac1 220.0(a) FL(b)(Ac1 220.0W/ 'c0)15(RRL20(c)(FLIP)))W/Lm08)FLIPRL20RL20W/(c012)15RL202EFL4(8)2E 55W/c0W/c0FLRsRL20AsR220RW/c0R*W_ /c0W_*/3.4(R)7)c0Ncd/2(c011)DA=5%W _*/Nc=20W/RL20c0c0=2.06×W/c0c07)W/(c0W_*=216)2W_DA=5%RL20W _*/5)FLd/2c0(2W_178319W Vol. ??, No. ??, ???-???1:1As(2012)5)X0.80.6CTRs(GL-4.5m)GL-6.15 8.85mAs(GL-8.2m)10)Rs2EAs(GL-9.6m)As(GL-10.9m)0.4As(GL-11.7m)AsGL-10m0.2W_*/' =2.06coW/ 'co000.10.2W/W_*/160.3('c0W/c0(0.417)611)N1W/c0RL205c0LERW/RL2016.2 18.2RL20c0RL20RsLER=1.0W/c0AsLER >1.05)u/m0LERLER5)RL205W/u/m0m0=0.95(u/m0=0.9517)2E5Rs0.4Rs(GL-4.5m)As(GL-8.2m)As(GL-9.6m)As(GL-10.9m)As(GL-11.7m)0.3As2E5u/m0>0.9RsW/DA190.2W/ 'co =0.032-0.48RL20+2.4RL20DA =1%W/20.12Em0( u/W/0.1170.2RL20RL20W/0.3W/0.4m0=0.004m0>0.9)2E 5002E(GL-5.3m)DAm0c03.5FLRL2018FLFL<1.0AER<1.0u/m0<0.9W_*/u/W/RL20m0(m0<0.914(c))W/m0(15(c))LER2ELERRs9320c0DA=5%W_*/c0m0 FL0.01.0AER2.00.03.00.01.02.0u/ 'm03.00.0B0.40.0BRcRsAc1 15.010.05.010.00.12E(a) FL(b)101000.0BRsAc1 15.010.015.020.02E 5(1Ac1 2Ac1 220.02E 51.015.0Ac1 22ELER0.9AsAs15.020.00.810.0As15.00.6RcRcRsAc1 15.04.02E20.02E 5)(c)2E2E 5(FLIP)18As1(R0.14)5(L0.01)FL20FL2E0.0012E55)0.00010246810DA(%)19 Rs(GL-5.3m)W/DAd/2m0W/4.FL6)1)FL2)575.3)(L)FL10321)c0c0 Vol. ??, No. ??, ???-???1)()pp.161-169, 2017.2)631,-48, pp161-177, 1999.3)2011.FLVol.8, No.3, pp. 463-475,4)2013.FLVol.11, No.3, pp283-5)293, 2016.6)( 3 ) pp1-21, 2014.7)8)43522016.3Iai, S. , Matsunaga, Y. and Kameoka, T. : Strain Space PlasticityModel for Cyclic Mobility, Soils and Foundations, Vol. 32, No.2, pp.1-15, 1992.9)FLIPNo.869 1997.X10)7CT3pp410-418, 2012.11811)2019.(????. ??. ??11322) A case study of energy-based liquefaction evaluation method- Compared with FL-method and effective-stress analysis -Keigo AZUNO1Takaji KOKUSHO21Chuo Kaihatsu Corporation, Geo-Solution Center2Professor Emeritus, Department of Civil & Environment Eng., Chuo UniversityAbstractFL-method being widely used as one liquefaction evaluation method of ground is based on the force-equilibrium. Onthe other hand, an energy-based liquefaction evaluation method is very limited in engineering practice, despite thatproposed liquefaction method focused on the dissipated energy in the past. In this paper, the liquefaction evaluation byenergy-based method is applied to the actual case in Urayasu ground where damaged by Tohoku earthquake 2011. Thispaper discussed the comparison of liquefaction evaluation method of seismic upward wave energy, which proposed byProf Kokusho, with the method of liquefaction energy capacity of sand. This method of FL-method and effective-stressanalysis in the liquefaction practice was also compared with primary effective stress analysis (FLIP), the result of ourresearch was that effectiveness of energy-based method can be certain evaluated.Key words: liquefaction, dissipated energy, predictions and evaluation12323
  • ログイン
  • タイトル
  • 東日本大震災による液状化被害箇所の液状化強度特性の深度分布と種々な液状化判定
  • 著者
  • 石川 敬祐・安田 進・和田 昌大
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 324〜332
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000007
  • 内容
  • NFFF324 325 FFFFFFCCCCCCFFFFFFFCCCCCCCN.PNNNBFCFCRFCF326C RL20 = 0.245Tw-2 RL20 = 0.385Tw-3 RL20 = 0.330Tw-4 RL20 = 0.430Tw-5 RL20 = 0.292Tw-7 RL20 = 0.220NVRL20 = 0.242Tr-1 RL20 = 0.237Tr-2 RL20 = 0.334GP-1 RL20 = 0.235Tr-3 RL20 = 0.272Tr-5 RL20 = 0.811GP-2 RL20 = 0.474WNVFCWRWkWFCWNVWNVRRWWNV327R RRRRRRRl20 DA=5%WRRRRRRRWWWRWWWWWWRB328BG VACFFGCC329C FRRRWAWRCAERWH/EEWHAWHECAERWH Euf)CFFFFEFRWKHWHWHWH EWH EAERWH EFAER330 WRWFAERFFFFSoils and FoundationsFFFFFF331 332
  • ログイン
  • タイトル
  • 地盤の塑性変形に費やされた入力地震動のエネルギーを等価線形解析から算定する手法の適用限界について
  • 著者
  • 加村 晃良・山口 輝大・金 鍾官・風間 基樹
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 333〜344
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000008
  • 内容
  • 333 heqnI334 335 N'vNp'vpGh'chh'cr='cpG336 337 338 339 340 341 342 343 344
  • ログイン
  • タイトル
  • 異方応力状態の密度の異なる豊浦砂の液状化強度特性と累積損失・ひずみエネルギー
  • 著者
  • 石川 敬祐・原田 健二・安田 進・金井 勇介
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 345〜350
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000009
  • 内容
  • Vol. ??, No. ??, ???-???12341234K051.4)19951)(SCP)(K0)K012)3)6)K0FLK02.21345N6) s h (=Du) s v (=sh-Ds v)K05)s1svhK01K0 cK016)K0K00.51ssvchcK00.550250.51.050501.01.550751.2 or 1.3K00.7 1.524.(RL20)K037.5%DAK0/6)N2RL20NK0RL20/2NcvNc4v0.5NDr 50%0.40.30.220.1013.K00.51.01.2RL200.1440.1840.19451050 100Nc5001050 100Nc5001050 100Nc5000.5Dr 70%10cm6cmDr0.410cm50%,70%,85%0.3CO22 32BkN/m0.22000.950.130ssvchc101K00.51.01.21.3RL200.1740.2490.2790.29450.7K0 c>1.00.6Dr 85%0.50.4K0 c>1.00.30.25)0.10.1Hz101K0 cK0 cK00.51.01.3RL200.2580.3660.42153234620 Vol. ??, No. ??, ???-???411Dr 70%(1)7)0.84K00.51.01.21.30.60.40.20.67)0 -410K0=1.30.5K0=1.20.410-310-210-110-210-1W/ 'v15Dr 70%K0=0.50.3K00.51.01.21.310K0=1.50.2K0 Dr 50% 70% 85%0.51.21.30.1000.10.2K0=1.00.30.40.5RL20450.60 -41010-3W/ 'vRL2050.045.Dr 50%0.035.15Dr 70%K00.51.01.20.02Dr 70%0.010.5000.60.080.60.060.01W/ 'v0.02Dr 70%K00.51.01.21.30.040.02Dr 50%0080%60.02Dr60.46Dr 50%K00.3Dr 70%K0=0.5Dr 85%K00.51.01.30.2K0=1.0 1.2 1.3Dr 85%K00.04DA7.5%8W/ 'v0.100K0633470.1W/'v0.2 8 9 105.2377Dr=50% K0=0.57DA=7.5%75(0.08DA=7.5%Dr 70%0.0670.0420(S W/v)Nc=20(SW/s v)Nc=20K0 (W/ 'v)Nc=200.50.02031.00.03591.20.04341.30.04550.028 9 108 9 10(S W/v)Nc=2000(SW/s v)Nc=200.10.20.30.4t d/s 'v0.50.140.04 Dr 50% , K0=0.5W/ 'vW/ 'v0.120.1( W/ 'v)Nc=200.02Dr 70%0.08(0.010.06W/ 'v)Nc=200.04K00.51.01.21.30.020.004151050 100Nc0050070.10.20.3( W/ 'v)Nc=200.03890.07180.07730.08500.4t d/s 'v0.59 Dr 70%0.30.04Dr 85%Dr 50%0.20.020.100K00.51.01.20.10.20.30.08(W/ 'v)Nc=200.00990.01230.01830.4t d/s 'v000.5K00.51.01.30.10.20.30.4(W/ 'v)Nc=200.09560.15820.18130.50.6 0.7td/s 'vK00.51.01.3( W/ 'v)Nc=200.20670.28620.34360.50.6 0.7t d/s 'v0.60.8Dr 85%Dr 50%0.50.060.40.040.30.20.0200K00.51.01.20.10.20.3( W/ 'v)Nc=200.02100.02580.04230.4t d/s 'v0.1000.50.10.210 Dr 85%8 Dr 50%43480.30.40.8 Vol. ??, No. ??, ???-???)Dr(S W/v)Nc=20(SW/s v)Nc=20K0=0.5RL2050%Dr 85% K0=1.38 9 10Dr 85% K0=1.02.92.5K016.4 18.3K0=0.5RL20(S W/v)Nc=20K0(SW/s v)Nc=20Wi)(Ri8DWi50%6.Ri50(1.0 1.2)=1.28 1.35 DWi50(1.0 1.2)=1.24 1.58 Wi50(1.01.2)=1.23 1.7313.6 16.05K0=1.0K0=1.29Dr 70%Ri70(1.0 1.2 1.3)=1.431.60 1.69DWi70(1.0 1.2 1.3)=1.79 2.14 2.24 Wi70(1.01.2 1.3)=1.85 1.99 2.1910Dr80%K0Ri80(1.01.3)=1.411.63DWi80(1.0 1.3)=1.65 1.90 Wi80(1.0 1.3)=1.38 1.66K0K0K0K0K05Dr 50% K0=1.00.50.4K00.51.01.21.30.30.6K00.50.5 1.01.21.31)WW2)0.43)0.34)0.20.20.15)0.1040 50 60 70 80 90Dr(%)040 50 60 70 80 90Dr(%)6)117)118)RL20(S W/v)Nc=20Yasuda,S. Ishihara,K. Harada, and Shinkawa, N.:Effect of SoilImprovement on Ground Subsidence due to Liquefaction, Soils andFoundations, Special Issuue, pp99~107,1996.:,4.33.,pp.320-324,2006.:,2017.11.,,:,10,pp.329-332,1975.5.,,:, 16,pp.585-588,1981.4.,,:2, 26,pp.585-588,2001.8.:,, 4,pp.83-85,1995.11.:FL,Vol.8,No.3,pp463 475(????. ??. ??(SW/s v)Nc=205349) Characteristics of cumulative dissipation and strain energy of liquefaction process inanisotropic stress state of Toyoura sand with different densityKeisuke ISHIKAWA1 Kenji HARADA2 Susumu YASUDA3 Yusuke KANAI41 Tokyo Denki University, Faculty of Science and Technology2 Fudo Tetora Company,3 Tokyo Denki University, Faculty of Science and Technology4 Graduate of Tokyo Denki University, School of Science and EngineeringAbstractIt is reported that on the improved ground due to compaction, it is effective as measures against liquefaction due tofactors such as density increase and K0 increase. In recent years, introduction of liquefaction judgment method byenergy has been advanced to make the design more rational. Therefore, in this study, we focused on the fact that thecoefficient of earth pressure at rest increased due to the compaction improvement, and conducted a liquefaction test inToyoura sand with different density in an anisotropic stress state and tried to evaluate from an energy viewpoint. As aresult, the larger the relative density, the greater the rate of increase in liquefaction strength with the increase ofcoefficient of earth pressure at rest. In addition, it was found that the rate of increase in liquefaction strength due tocompaction improvement can be evaluated 5 times more by evaluating of energy method than stress method.Key words: Anisotropic stress Sandy soil Liquefaction strength dissipation energy strain energy6350
  • ログイン
  • タイトル
  • 液状化強度に及ぼす要因と対策の設計に関するエネルギー的な視点からの考察
  • 著者
  • 原田 健二・石川 敬祐・安田 進・金井 勇介・出野 智之
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 351〜358
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000010
  • 内容
  • 1.351 2.22.2.1KFcemaxseminUcDUc3.UcUcDANcdvNcdvDrDrKKKRLRLRL RLK K352KKNcNcNcNcK 0.7K0=1.2Ishihara et. al (1997)(2003)0.6K0=1.50.5K0=0.50.40.30.20.10K0=1.04.uWcWuWcccucDAWWcWccWDAu353ccc 354 dWvcWDANc=DADrdcdvvdvNcWcWNc=cDrNc=DrWWcNc=cWWWccRLdvcNc=Nc=RLNc=dvKdRLvdvWcRLdW355cv 5.WdcWmaxv maxdcminv minRLWcNcFL RLFLWWccWmaxRLd/ vNCcmind/ vRLd/ vKRLWcNcKKK ,NCRLWcWNcRLNcK0356K0cNc KKdWvWccKFLFLKDrKFLRLDrWcWNcDrcKRLWcWNccNcRLNcKWcWNcDrcNcRLWRLWFLcWcWNccKKKK357cNc FLdvFL6.358
  • ログイン
  • タイトル
  • 基準化累積損失エネルギーによる砂や各種しらす土の繰返し挙動評価
  • 著者
  • 清原 雄康
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 359〜365
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000011
  • 内容
  • Vol. ??, No. ??, ???-???1111.s72.641.240.730.1740(g/cm3)emaxeminD50 (mm)FL(%)2.57-2.631.330.640.26352.572.341.340.1738.61)2),3)4)5),6),7)18)2.16),7)1),10)3),9)11)2)Sr:80% 30%75%2.Dr:90%20%5cm×10cm1359Sr:83~88% Dr:6065%3AEV:50kPa1Dr:90%2372312dd2.2DKCDKU12)JGS0541-200012)2.3JGS0542W(1)4)1Dr(%)d(g/cm3)LK28LK32LK38LK41LK46LN19LN26LN29LN33LN38LUN39LUN45LUN50LCN40_77LCN60_70LCN75LCN77LCN89LDN75LDN86LDN93LDN103LDN115LT36LT41LT44LT501.361.411.371.361.351.351.391.41.381.381.361.371.361.371.381.381.371.371.51.51.481.511.520.961.051.051.040.940.870.930.940.960.90.840.840.870.860.930.910.940.920.910.910.910.930.710.710.740.70.691.671.451.461.470.930.860.920.930.950.850.790.770.810.810.90.880.870.900.890.890.910.910.660.660.680.650.641.471.311.331.34LYT45_1401.171.191.17B617562615868777974747675746668686564979895981006789888710010010010010010010010010010082.782.587.610010010010010096.896.195.397.796.3100100100100100c'0.950.980.950.990.970.920.940.980.950.940.380.400.421.001.021.00(kPa)d(kPa)Hz0.960.740.720.670.790.70.970.970.980.9710394100105104979610010010010010010010010010010010087888888881001001001002832384146192629333839455077 (39,58)70 (59)757789758693103115364144500.50.50.50.50.50.50.50.50.50.50.10.10.10.10.10.10.10.10.50.50.50.50.50.50.50.50.50.97100143(47,97)0.52d(g/cm3)DKCDKUDKSr80DKSr301.371.371.381.4c'0.930.940.920.89(kPa)1001001001000.910.910.90.87Dr(%)(%)0.650.640.670.7210010080302360Bd10.91-(kPa)2.8,4.8,4.8,36,5.53.7,4.9,13.7,14.4,23.54.4,9.5,19,38,49,59,70,80,78,105.0,9.1,40,61,70,82,94,104Hz0.10.10.050.05 Vol. ??, No. ??, ???-???1150100'cWi/ 'c = qi Hi 1000/ 'cW=(1)2W[J/m /kPa][J/m2]i2[kN/m ]'cWi[kPa] qiHi ii[m]3.3.1d12d2737qad237LK46LK28DKC,DKUdqaqadaDKC2.8kPad4d36kPa54d:5.5kPa7aq( a)SARaDKUd:3.7kPa5d:23.5kPa8%a4Sr:80%30%(DKsr80,DKsr30)d:4.4kPa7aqDKsr80d:80kPa8DKsr30d:10kPad:5kPad:104kPa587W7257( a)SA2.7 J/m /kPad0.7 % 1.6%2.5%W1~2J/m2/kPa( a)SAW22.7J/m /kPa7DKUDKCW1.1~1.6 J/m2/kPa2W( a)SA38kPa~46kPaWR( a)SAdDKCWd:5.5kPa( a)SAW33611DKUDKC21.6J/m /kPad:36kPa( a)SA0.004%23 d:4.8kPaWW0.00008J/m2/kPa 0.00021J/m2/kPad:5.5kPa52W0.00060J/m /kPaEeq670MPad:4.8kPaEeq:140MPad( a)SAd67( a)SAdW( a)SAd7DKsr80DKsr30W( a)SA( a)SA( a)SASr2.5%W15Jm2/kPaDKsr80100%DKC20.8Jm /kPa19DKUDKsr30( a)SA:1.06( a)SA( a)SA1%7qaDKCDKUdDKC66% DKU106d( a)SADKC DKU3.2788Sr:83d99aqqaW788%( a)SA8Rad19kPaLN192000.6W0.6J/m2/kPaLN2620.5 1J/m /kPaLN 29LN 33dLN 3826kPaW794362W( a)SA R Vol. ??, No. ??, ???-???Sr:8388%39kPa 45kPad50kPaLUN39 LUN45 LUN505 6.5 J/m2/kPaSr:100%0.7J/m2/kPaLN8d( a)SA3.310LCN89LCN60_70qa11W( a)SARa10a4%a112.6 10J/m2/kPaWqdLCN60_70LCN40_7770kPadLCN77d( a)SA77kPaLCN89RR11W( a)SA3.23.412Dr:90%LDN115)(LDN75qa13W( a)SARa4%103kPadLDN103LDN115a5~7J/m2/kPa1.8%d( a)SA93kPaLDN75 LDN86 LDN9310~15J/m2/kPa1%90kPad100kPa12Raq3.2-0.53.514(LT36dR3.3J/m2/kPa2aqLT50 LYT45_150)15WW( a)SA2.2 5J/m2/kPa713( a)SA5363W( a)SA RR 1.4~4.7%1Dr:90%qa20%LYT45_150( a)SA2.5%26J/m2/kPa8R-0.53.61614aq7d/2 c0.40.6 0.517Wd/2cd/2 cW7d/2 cW15W( a)SA R4.717( a)SAW0.7 %1.6%1~2J/m2/kPa16W1.1~1.6J/m2/kPa( a)SA2W2.7J/m2/kPa2d( a)SA( a)SAd( a)SA3 Sr:80% Sr30%7( a)SASr:80%15Jm2/kPa42.2 5J/m2/kPaW2.5%WSr:80%719dW175226kPa6.5 J/m /kPa0.5 1J/m2/kPa8d6364 Vol. ??, No. ??, ???-???2)pp.86-88 20145W3)2 3J/m2/kPaWC Vol.72 No.3 pp. 196-203, 201654)pp.267-270 201415J/m2/kPa( a)SA226J/m /kPa5)2.5%852pp.1521-15222017:6),III-21,2018.7)53pp.731-732 20188)Vol.136No.3pp.205-221 20189)25III-53201410)51JSPSpp.1707-1708 2016.11)24560612 15H0226301 18H01529,18K0435661,9-4,2018(12))pp.635-669 2003.1)(????. ??. ??Vol.12 No.2 pp.235-244 2017Dissipated energy evaluation on silica sand and Shirasuunder cyclic loadingYukoh KIYOHARA11National Institute of Technology, Hachinohe College, Department of Civil Engineering andArchitectural Design CourseAbstractSaturated and unsaturated shearing behavior on sand, Shirasu, which is volcanic ash sand with pumice, and improvedShirasu (cement, chemical grouted and well compacted Shirasu) were investigated to valuate earthquake proofperformance by cyclic triaxial test. Referencing that cyclic mobility, cumulated dissipated energy was calculated andcompared with each other. Stress history, drainage conditions and degree of saturation influenced the dissipatedenergy. Improved soils became tough, reduced excess pore water pressure by positive dilatancy, and required moredissipated energy to reach 2.5% of single amplitude strain. Generally dissipated energy could be verified the soilperformance during cyclic loading.Key words: cyclic triaxial test, liquefaction, dissipated energy, volcanic soil, unsaturated soil7365)
  • ログイン
  • タイトル
  • 擬似エネルギー容量に基づく過剰間隙水圧モデルの検討
  • 著者
  • 道明 裕毅・山田 雅一
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 366〜378
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000012
  • 内容
  • 1.366 1ru Excess pore water pressure ratioW Dissipated energy per unit volume of materiale0 Initial void ratio of the soilBulk modulus of waterInitial vertical effective stressWN Dissipated energy parameteremin Minimum void ratio of the soilwv0F2(Dr) Normalizing function to account for DrKcDr Relative DensityF1(Kc) Normalizing function to account for Kcv0h0uxs Excess pore pressureS'sdW Increment in dissipated energy per unit volume of materialh0 Initial horizontal effective stressmwliq Strain energy required for liqufaction triggeringCalibration parameterm0 Initial mean effective confining stressNemat-Nasser andShokooh (1979)a ba=2.5Mostaghel andHabibaghi (1979)e0wb=3.5e0 eminemin=0.564New Brighton SandDavis and Berrill(1982)=0.127 0.293=50 100 150kPaDr=67 95%New Brighton SandBerrill and Davis(1985)(0.8(0.50.6) (0.650.5)=0.127 0.2930.5)=50 100 150kPaDr=67 95%New Brighton SandDavis andBerrill(2001)Yamazaki, Towhataand Ishihara(1985)Monterey No.0(emin=0.564,emax=0.852)=30 55kPaDr=54 68%=0.104 0.185=0.127 0.293a ba=0.848for=50 100 150kPaDr=67 95%Toyoura Sandb=2.04×10 -3for=0.188=294kPaDr=42 51% (Dr=42 49% (0.264 ()=0.184 0.194 (=0.14% strain/minLaw, Cao andHe(1990))))Fujian Standard sandWN-2.01.0HzYanagisawa andSugano (1994)a=50Dr=70%100 150Toyoura sandb0.5Hz=196 294 343kPaDr=40 70%0.38 0.47cyc =0.240.50 0.56 0.60%Samples prepared by MSPMethodHsu (1995)a=196kPaDr=49 81%0.5 1.0%cyc=0.2K0=49kPaDr=61%Chu-An sandb=0.16 0.19 0.221.0HzLiang (1995)a=50 100 200kPaDr=35 50 80%Reid Bedford sand and LowerSan Fernando Dam siltysand(FC<28%)b cReid Bedford sand:a=0.0233~0.3663, b=1.142~1.363,c=0.360~0.478LSFD silty sand:a=0.0033~0.0589, b=1.222~1.660,c=0.159~0.228=82.7kPaDr=54.9 58.3 67.5%(ReidBedford)Dr=59.9 71.2 87.4%(LSFD)Toyoura sandOgawa,Abe andYoshitsugu (1995)=0.2: 0.1HzFigueroa,Saada,Kernand Liang (1997)A0.47 1.02%0.1Hz(Kern 1996)=98kPaDr=60%Reid Bedford sand=41.4 82.7 124.1kPaDr=50 60 70%(Figueroa et al. 1997)Wang,Takemura andKuwano (1997)Green,Mitchell andPolito (2000)abna=70.4, b=65.9 (Ip=2, Fc=8)a=65.9, b=62.9 (Ip=5, Fc=12)a=12.5, b=13.7 (Ip=10, Fc=16)a=3.39, b=4.87 (Ip=30, Fc=37)PEC=0.006 0.154 (Ip=2)=0.009 0.171 (Ip =5)Toyoura sand and Kawasaki claymixturesIp=2 5 10 30=98198 392kPaYatesville Sand and MontereySandDr=18.0 34.6 68.3 81.1 85.6%Jafarian, Towhata,Baziar, Noorzadand Bahmanpour(2011)0.0070.5367Toyoura sand=166kPaDr=73% 3.3.12. GMP2sab368g/cm3)2.6312.7552.7592.7122.7962.7692.659emaxemin0.980.940.861.001.001.111.100.610.610.510.610.640.780.71 3.24. GMP4.1GMP369 1.21.00.80.60.40.20.00123456789( )370 4.24.3GMP371GMP 4.4GMP5. GMP5.1372GMP 373 1.21.00.80.66. PEC0.40.20.00.000GMPDr=61%_Fc=5%_=0.400.005=49kN/m2GMP0.0100.015(0.020Ws5.2GMP5.3GMP5.4GMP6.1374PECP 6.2375 -----376 5)6)7)8)9)10)7.11)1)12)2)13)3)14)4)15)16)5)17)1)2)3)4)Nemat-Nasser, S. and A. Shokooh : A Unified Approach to Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing,Canadaian Geotechnical Journal, Vol.16, pp.659-678, 1979.Towhata, I. and Ishihara, K. : Shear Work and Pore Water Pressure inUndrained Shear, Soils and Foundations, Vol.25, No.3, pp.73-84,1985.,:FL-,, Vol.9, No.4, pp.603-618, 2014.Mostaghel, M. and K. Habibaghi : Cyclic Liquefaction Strength of18)19)20)377Sands, Earthquake Engineering and Structural Dynamics, Vol.7, pp.213-233, 1979.Davis, R.O. and J.B. Berrill : Energy Dissipation and Seismic Liquefaction in Sands, Earthquake Engineering and Structural Dynamics,Vol.10, pp.59-68, 1982.Davis, R.O. and J.B. Berrill : Pore Pressure and Dissipated Energy inEarthquakes Field Verification, Journal of Geotechnical and Geoenvironmental Engineering, 127(3), pp.269-274, 2001.Yamazaki, F., I. Towhata, and K. Ishihara : Numerical model forliquefaction problem under multidirectional shearing on horizontalplane, Volume 1, Proceedings, Fifth International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, April 1-5, pp. 399406, 1985.Law, K.L., Y.L. Cao, and G.N. He : An Energy Approach for Assessing Seismic Liquefaction Potential, Canadian Geotechnical Journal,27(3), pp.320-329, 1990.Yanagisawa, E. and T. Sugano : Undrained Shear Behaviors of Sandin View of Shear Work, special volume on Performance of Groundand Soil Structures during Earthquakes, Thirteenth InternationalConference on Soil Mechanics and Foundation Engineering, NewDelhi, pp.155-158, 1994.Hsu, H.-L. : Study on the relationship between shear work and porewater pressure for saturated sand in undrained test, Vol .1, Proceedings,First International Conference on Earthquake Geotechnical Engineering (Ishihara, ed.), A.A. Balkema Publishers, Rotterdam, Netherlands, pp.301-307, 1995.Liang, L. : Development of an Energy Method for Evaluating theLiquefaction Potential of a Soil Deposit, Ph.D. Dissertation (J.L.Figueroa and A.S. Saada, Advisors), Case Western Reserve University,281pp, 1995.Ogawa, Y., H. Abe, and S. Yoshitsugu : Energy loss and stored elasticenergy during liquefaction process, Proceedings, First InternationalConference on Earthquake Geotechnical Engineering (K. Ishihara, ed.),A.A. Balkema Publishers, Rotterdam, Netherlands, pp.957-962, 1995.Figueroa, J.L., A.S. Saada, L. Liang, and N.M. Dahisaria : Evaluationof Soil Liquefaction by Energy Principles, Journal of GeotechnicalEngineering, 120(9), pp.1554-1569, 1994.Wang, G., J. Takemura, and J. Kuwano : Evaluation of excess porewater pressures of intermediate soils due to cyclic loading by energymethod, Computer Methods and Advances in Geomechanics (Yuan,ed.), A.A. Balkema Publishers, Rotterdam, Netherlands, pp.22152220, 1997.Y.Jafarian, I.Towhata, M.H.Baziar, A.Noorzad, and A.Bahmanpour :Strain energy based evaluation of liquefaction and residual pore waterpressure in sands using cyclic torsional shear experiments, SoilDynamics and Earthquake Engineering 35 pp.13-28, 2012.R.A. Green, J.K. Mitchell, and C.P. Polito : An energy-based excesspore pressure generation model for cohesionless soils, Proc, JohnBooker Memorial Symp.-Developments in Theoretical Geomechanics,D.W. Simith and J.P. Carter, eds., pp.383-390, 2000.C.P. Polito, R.A. Green, and Jongwon Lee : Pore Pressure GenerationModels for Sands and Silty Soils Subjected to Cyclic Loading, Journalof Geotechnical and Geoenvironmental Engineering, pp.1490-1500,2008.C.P. Polito : Constant-Volume Cyclic Testing to Determine InputParameters for the GMP Pore Pressure Generation Model, Geotechnical Frontiers, pp.71-79, 2017.,,,N-,, pp.645-646, 2014.T. Kokusho and Y. Kaneko : Soil Dynamics and Earthquake Engineering, Soil Dynamics and Earthquake Engineering 114, pp.362-377,2018.)(????. ??. ?? 378
  • ログイン
  • タイトル
  • 2016 年熊本地震の地震観測記録(KiK-net)を用いた波動エネルギー
  • 著者
  • 石澤 友浩・國生 剛治
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 379〜384
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000013
  • 内容
  • VSFLMJVSDVSEEt ttVSEE379 VSMJMW380 DVSEVDVVVVsE EEEEEuEuVSEuDVSDDVSVsEUEUE381EuDVSEUVS VSVSVSVSEuXVSEEuEVSEuXXMXEEEXEuXEEEMMEuEuXM382X EEEuEuQuarterly Journal ofthe Geological Society of London383 384
  • ログイン
  • タイトル
  • エネルギー法を用いた高架橋の液状化設計に関する一考察
  • 著者
  • 井澤 淳・山本 昌徳・神澤 拓・小島 謙一
  • 出版
  • エネルギーに基づく液状化予測手法に関するシンポジウム論文集
  • ページ
  • 385〜392
  • 発行
  • 2019/03/26
  • 文書ID
  • cs201903000014
  • 内容
  • Vol. ??, No. ??, ???-???1111131.FL1)2)3)2.2.3~4.3mDr60%G3234)5)6)FL3)IIIL2II1385 20mDE1.00.020m0.0DE1.0DE=010m4.00m4.30m6.00m6.30mRL0.1600.158-R200.1200.120-FL0.0650.071-FL110.80.80.60PL2.2211.7PL=13.93.0.63.10.4 0.3330.40.2DE0.00.0-PLDEDER20 20RLLDLL2.4552.213-R20>0.30.3R200.2 0.4 0.6 0.8FL1L20.200.2 0.4 0.6 0.8FLII201R20=0.12PL=13.9FL~DEDEPyDEPyKPL>20DE KFL=0.15~0.19R20=0.12DE=0.023860.3DE=0.0PL>20 Vol. ??, No. ??, ???-???130,33kh431,320.80.618,1415,16,17,110.440.202004006008003.31000(mm)11µmax/DE=0.0y05<PL 2003.2DETeqkheqTeq=1.160~kheq=0.582L245 PL338720 RC W gKTeq 2.01000 i) 5500ii) 20PL<20khmkheqC(khm+khy)/2kheqPLeq2 .0BkyAABC100(khm+khy)/2:500.10.5150dydeqdm14002000-200-4004002000-200-4000i) 5PL<2040.8 khy=0.462dhy=155 mmii) 20khmax=392.8galPL0.60.4: kheq=0.582: deq=196 mmTeq=1.16040.2max=312.4gal102030(sec)02004006008001000(mm)11L2µ<1.0=10.54.0.14.1=103)0.050.10.515Dr=60%=0.4%0.0127GHE-S7)GHE-S8)=0.4%0.01279)GHE-S0.0310)II G1=20kN/m34388VS=400m/s, W/ 'cVol. ??, No. ??, ???-???0.050.040.03Dr=60%=0.1%=0.4%=1.0%0.01370.020.01270.0102040601Dr=60%0.8801005=0.1%=0.4%=1.0%00.6-540200-20-400.40.030.200.010.021000W/ 'c0-1000010(sec)20:W11)0.10.080.060.040.02DE=0.030=0.4%102000.01271020(sec)0.01270.03DE=0.034.312)kheq=0.574Teq=1.175334.2DE=0.035PL<20420PL255389PL<20 Teq=1.175sec kheq=0.574 h=10%: kheq=0.574: deq=198 mm1Teq=1.175131,32khy=0.4510.80430-10.63311,18,1415,16,170.440.22004006008000-100010001000(gal)(mm)1µ=1.181000(gal)khdhy=156 mm010-10000µ<1.010(sec)=10.51=100.131,320.80.050.115kh0.5200.643311,18,1415,16,170.41 0.2G5µ deq=234mm0200µ deq=453mm4006008001000(mm)=11430µ=2.290.5=100.10.10.51eq=1.185=1DE=0.0DE=0.03Tg=0.411Tg=0.758G5=2.2912)1kheq=0.574Teq=1.17510%16390DE=0.03 Vol. ??, No. ??, ???-???G5196mm198mm0.5820.5741.1601.011.1752.291.01.180.030.310005001005051100.10.51PL<20G555.6.1)PL=13,75 ,650 , 2010.FL2),, Vol.9, No.4, 603-618, 20143),Vol. 631, 1999.4), 2012.7391, 2009.5)10), 2012.6)Q-1Duttine Antoine737)III-197 2018.S, 12,,460 , 1994.11)53, 2006, 2018.8)12)150, 2015.S9)53,30, 2018.(????. ??. ??,)Study on seismic design of railway viaductswith energy based assessment for soil liquefactionJun IZAWA11Masanori YAMAMOTO1Taku KANZAWA1Kenichi KOJIMA1Soil Mechanics and Earthquake Engineering Laboratory, Center for Railway Earthquake Research, RailwayTechnical Research Institute.AbstractThis paper describe applicability of energy based assessment for soil liquefaction for seismic design of railwayviaduct. Seismic response of a railway viaduct, whose soil reaction was decreased in consideration of soilliquefaction, was calculated by applying inertia force determined based on result of an energy based assessment, andthe response was compared with that calculated based on a stress based assessment. As a results, it was confirmedthat almost the same seismic responses were obtained, which implicates that results of energy based assessment forsoil liquefaction can be used for seismic design of railway viaducts n consideration of soil liquefaction. Finally, futurenecessary businesses for developing more rational seismic design with energy based assessment for soil liquefactionare summarized.Key words: assessment for soil liquefaction, energy based method, seismic design of railway viaducts8392
  • ログイン